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Related Work, Inspiration

@ DeepRM [Mao et al., 2016]
e DRAS [Fan et al., 2022]
@ DeepMAG [Zhadan et al., 2023]
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Figure: DeepRM environment
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Agents - PPO [Schulman et al., 2017]
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Job Slot - shared resource

AEC games [Terry et al., 2021]:

(5,50, N, (Ai)ieing, (Ti)ieinys Po (Ridierngs () iern)s (Oi)ieqnys v), where:
@ S - states, sp is the initial state.

N - number of agents; agents from 1 to N;environment = agent 0.

A; - actions for agent i. For convenience, Ag is generally void.

T; - agent /'s state transition function

P - environment transition function.

R; - possible rewards for agent /.

Q; - possible observations for agent /i, while O; observation function.

v - compute next agent
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Questions

@ can independent, fully decentralised PPO agents learn task
scheduling?
@ what effect does the locality/globality of observations have?

@ how do these agents perform against heuristics?
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Environment Parameters

Parameter Value

time horizon 20

job slot size 5

number of resources 2
resource capacity 10
backlog size 60
number of machines per agent | 1,2
number of agents 2,3

Table: Environment parameters
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Agent Parameters

Parameter Value Description

learning rate 3-1073

batch_size 64

y 0.99 discount factor

gae-\ 0.95 bias-variance tradeoff fac-
tor [Schulman et al., 2015]

clip-range 0.2 clipping parameter for the
surrogate loss

entropy coeff. 0.0 Used in computing the loss

value-function coeff. 0.5
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Figure: Mean reward obtained over time by three PPO agents, using global
observations, global rewards and having one machine per agent.
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Figure: Running mean reward obtained over time by three PPO agents, using
local observations, local rewards and having one machine per agent.
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PPO-s vs Heuristics
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Figure: Average job slowdowns over load factors of different methods in an
environment with 3 machines and 1 machine per agent.
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Conclusions

@ global vs local perform roughly the same
@ training speed and convergence stability

@ scalability
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