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Related Work, Inspiration

DeepRM [Mao et al., 2016]

DRAS [Fan et al., 2022]

DeepMAG [Zhadan et al., 2023]
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Environment

Figure: DeepRM environment
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Figure: Our environment
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Agents - PPO [Schulman et al., 2017]

L(θ) = Ê[min(rt(θ)Ât , clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)]
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Job Slot - shared resource

AEC games [Terry et al., 2021]:
(S , s0,N, (Ai )i∈[N], (Ti )i∈[N],P, (Ri )i∈[N], (Ωi )i∈[N], (Oi )i∈[N], v), where:

S - states, s0 is the initial state.

N - number of agents; agents from 1 to N;environment = agent 0.

Ai - actions for agent i . For convenience, A0 is generally void.

Ti - agent i ’s state transition function

P - environment transition function.

Ri - possible rewards for agent i .

Ωi - possible observations for agent i , while Oi observation function.

v - compute next agent
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Questions

can independent, fully decentralised PPO agents learn task
scheduling?

what effect does the locality/globality of observations have?

how do these agents perform against heuristics?
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Environment Parameters

Parameter Value
time horizon 20

job slot size 5

number of resources 2

resource capacity 10

backlog size 60

number of machines per agent 1,2

number of agents 2,3

Table: Environment parameters
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Agent Parameters

Parameter Value Description

learning rate 3 · 10−3

batch size 64

γ 0.99 discount factor

gae-λ 0.95 bias-variance tradeoff fac-
tor [Schulman et al., 2015]

clip-range 0.2 clipping parameter for the
surrogate loss

entropy coeff. 0.0 Used in computing the loss

value-function coeff. 0.5

Table: PPO Agent Parameters
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Global

Figure: Mean reward obtained over time by three PPO agents, using global
observations, global rewards and having one machine per agent.
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Local

Figure: Running mean reward obtained over time by three PPO agents, using
local observations, local rewards and having one machine per agent.
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PPO-s vs Heuristics

Figure: Average job slowdowns over load factors of different methods in an
environment with 3 machines and 1 machine per agent.
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Conclusions

global vs local perform roughly the same

training speed and convergence stability

scalability
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