Multi-Agent Deep Reinforcement Learning for **Collaborative Task Scheduling**

Mali Imre Gergely

Babes-Bolyai University

WeADL 2024 Workshop

The workshop is organized by the Machine Learning research group (www.cs.ubbcluj.ro/ml) and the Romanian Meteorological Administration (https://www.meteoromania.ro/)

Machine Learning Research Group

MLyRE

Summary

2 [Related Work](#page-6-0)

4日下

4 同 ト

÷

 \sim

 \rightarrow \equiv \rightarrow

 $\leftarrow \equiv +$

Þ × ×.

4日下

4 何 ▶

÷,

イロト イ押 トイヨ トイヨト

 299

Þ

4. 0. 8.

 $AB + AB$

 $\mathbf{A} \rightarrow \mathbf{B}$

 299

Þ

イロト イ押ト イヨト イヨト

÷,

Related Work, Inspiration

- DeepRM [\[Mao et al., 2016\]](#page-18-0)
- DRAS [\[Fan et al., 2022\]](#page-18-1)
- DeepMAG [\[Zhadan et al., 2023\]](#page-19-1)

 \leftarrow

Environment

Figure: DeepRM environment

 \Rightarrow э

Þ

4日下

4 同 下

Figure: Our environment

E ×.

 \sim

4日下

÷,

Э×

Agents - PPO [\[Schulman et al., 2017\]](#page-19-2)

$$
L(\theta) = \mathbb{\hat{E}}[\min(r_t(\theta)\hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon)\hat{A}_t)]
$$

 \leftarrow \Box

●■→

重

Э×

Job Slot - shared resource

AEC games [\[Terry et al., 2021\]](#page-19-3): $(\mathcal{S}, s_0, \mathcal{N}, (\mathcal{A}_i)_{i \in [\mathcal{N}]}, (\mathcal{T}_i)_{i \in [\mathcal{N}]}, \mathcal{P},\ (\mathcal{R}_i)_{i \in [\mathcal{N}]}, (\Omega_i)_{i \in [\mathcal{N}]}, (\mathcal{O}_i)_{i \in [\mathcal{N}]}, \mathcal{V}),$ where:

- \bullet S states, s_0 is the initial state.
- \bullet N number of agents; agents from 1 to N; environment $=$ agent 0.
- \bullet A_i actions for agent *i*. For convenience, A₀ is generally void.
- \bullet T_i agent *i*'s state transition function
- \bullet P environment transition function.
- \bullet R_i possible rewards for agent *i*.
- Ω_i possible observations for agent *i*, while O_i observation function.
- \bullet \vee compute next agent

 Ω

Questions

- **can independent, fully decentralised PPO agents learn task** scheduling?
- what effect does the locality/globality of observations have?
- how do these agents perform against heuristics?

Environment Parameters

Table: Environment parameters

 $\leftarrow \equiv$ \rightarrow

重

∢ ロ ▶ ィ 何 ▶

Agent Parameters

Table: PPO Agent Parameters

 $\rightarrow \equiv$ \rightarrow

造

∢ □ ▶ ∢ 何 ▶ ∢ ∃

Global

Figure: Mean reward obtained over time by three PPO agents, using global observations, global rewards and having one machine per agent.

€⊡

Local

Figure: Running mean reward obtained over time by three PPO agents, using local observations, local rewards and having one machine per agent.

 \leftarrow

 QQQ

PPO-s vs Heuristics

Figure: Average job slowdowns over load factors of different methods in an environment with 3 machines and 1 machine per agent.

∍

 \blacksquare

Conclusions

- global vs local perform roughly the same
- training speed and convergence stability
- **•** scalability

 \blacksquare

э

 QQ

References I

- Fan, Y., Li, B., Favorite, D., Singh, N., Childers, T., Rich, P., Allcock, W., Papka, M. E., and Lan, Z. (2022). Dras: Deep reinforcement learning for cluster scheduling in high performance computing. IEEE Transactions on Parallel and Distributed Systems, 33(12):4903–4917.
- Mao, H., Alizadeh, M., Menache, I., and Kandula, S. (2016). Resource management with deep reinforcement learning. In Proceedings of the 15th ACM workshop on hot topics in networks, pages 50–56.
- Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2015). High-dimensional continuous control using generalized advantage

estimation.

arXiv preprint arXiv:1506.02438.

References II

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Terry, J., Black, B., Grammel, N., Jayakumar, M., Hari, A., Sullivan, R., Santos, L. S., Dieffendahl, C., Horsch, C., Perez-Vicente, R., et al. (2021). Pettingzoo: Gym for multi-agent reinforcement learning. Advances in Neural Information Processing Systems, 34:15032–15043.

Zhadan, A., Allahverdyan, A., Kondratov, I., Mikheev, V., Petrosian, O., Romanovskii, A., and Kharin, V. (2023). Multi-agent reinforcement learning-based adaptive heterogeneous dag scheduling.

ACM Transactions on Intelligent Systems and Technology, 14(5):1–26.